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Abstract

Introduction: Chinese herbal medicines have been utilized for thousands of years to

prevent and treat diseases. Accurate identification is crucial since their medicinal

effects vary between species and varieties. Metabolomics is a promising approach to

distinguish herbs. However, current metabolomics data analysis and modeling in

Chinese herbal medicines are limited by small sample sizes, high dimensionality, and

overfitting.

Objectives: This study aims to use metabolomics data to develop HerbMet, a high-

performance artificial intelligence system for accurately identifying Chinese herbal

medicines, particularly those from different species of the same genus.

Methods: We propose HerbMet, an AI-based system for accurately identifying

Chinese herbal medicines. HerbMet employs a 1D-ResNet architecture to extract

discriminative features from input samples and uses a multilayer perceptron for

classification. Additionally, we design the double dropout regularization module to

alleviate overfitting and improve model's performance.

Results: Compared to 10 commonly used machine learning and deep learning

methods, HerbMet achieves superior accuracy and robustness, with an accuracy of

0.9571 and an F1-score of 0.9542 for distinguishing seven similar Panax ginseng

species. After feature selection by 25 different feature ranking techniques in combi-

nation with prior knowledge, we obtained 100% accuracy and an F1-score for

discriminating P. ginseng species. Furthermore, HerbMet exhibits acceptable infer-

ence speed and computational costs compared to existing approaches on both CPU

and GPU.
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Conclusions: HerbMet surpasses existing solutions for identifying Chinese herbal

medicines species. It is simple to use in real-world scenarios, eliminating the need for

feature ranking and selection in classical machine learning-based methods.
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1 | INTRODUCTION

Chinese herbal medicines have a thousand-year-long history of clinical

use in treating various diseases.1 The most commonly used Chinese

herbal medicines include Panax ginseng, Gleditsia sinensis, and Akebiae

Caulis. Chinese herbal medicines have varying species and composi-

tions. Using P. ginseng as an example, we illustrate the challenges and

difficulties of identifying Chinese herbal medicines. Panax species

(Araliaceae), such as P. ginseng, P. quinquefolius, and P. notoginseng,

are famous worldwide for their remarkable tonifying effects and

extensively consumed as health-care products, functional foods, and

cosmetics.2 Ginsenosides are the primary bioactive components of

P. ginseng and have been shown to process anti-tumor, anti-

inflammation, antioxidant, and anti-fatigue properties.3 The different

Panax species closely resemble each other in terms of microscopic

features and chemical composition. However, the quality and effec-

tiveness of the same Panax species may vary depending on several

factors, such as plant growth conditions and processing procedures.

Since the medicinal ingredients between various Panax species are

similar, it is difficult to discriminate the different varieties. Therefore,

designed a high-performance and robustness method for accurate

identifying Chinese herbal medicines is crucial for their proper use.

Identifying the species of Chinese herbal medicines is difficult

because they usually contain complex and similar bioactive compo-

nents.4 The traditional methods for classifying Chinese herbal medi-

cines, as recorded in the Chinese Pharmacopoeia, are primarily based

on characteristics, shape, microscope examination, and physicochemi-

cal properties. However, these traditional methods must face numer-

ous challenges, such as complex sample pretreatment, susceptibility

to environmental influences, and difficulties in rapid identification.5

With the assistance of advanced omics technologies, such as

liquid chromatography–mass spectrometry (LC-MS) and gas

chromatography–mass spectrometry (GC-MS), several datasets for

metabolomics of Chinese herbal medicines are available. Conse-

quently, data-driven approaches for species identification have

gradually become predominant in this field. Some studies6–8 report

that the LC-MS is one of the most analytical techniques for separating

and characterizing multicomponent Chinese herbal medicines. The

untargeted metabolomics approach is commonly used in research to

comprehensively analyze all measurable analytes in Chinese herbal

medicines.9 However, the untargeted metabolomics approach pays

more attention to obtaining non-biased data, which neither provides

high-quality nor highly relevant datasets. Targeted metabolomics can

provide sensitivity and specificity data for known compounds in the

provided samples.10 Recently, the pseudo-targeted metabolomics

strategy, which integrates the advantages of both untargeted and tar-

geted methods, has been widely used for metabolomics differential

analysis, especially in identifying Chinese herbal medicines.11 Consid-

ering the intricate nature of bioactive components in Chinese herbal

medicines, gathering a substantial amount of metabolomics data for

model training proves costly. Consequently, many Chinese herbal

metabolomics datasets encounter various obstacles, including high

data dimensionality and small sample sizes, which impede the devel-

opment of effective identification methods.

Accurate identification of Chinese medicinal materials, especially

different types of the same genus, is an important prerequisite for

research and practical application.12 Due to the significant strength of

omics-related technologies, many advanced identification methods have

adopted data-driven modeling schemes to complete analysis tasks.13

These methods can be broadly categorized into machine learning-based

and deep learning-based solutions. Establishing accurate identification

models for Chinese herbal medicines using machine learning techniques

and metabolomics data is a meaningful research direction that has

gained considerable attention. For instance, Zhan et al.14 proposed a

novel classification system using support vector machine (SVM) and a

self-assembled electronic nose framework for Chinese herbal medi-

cines. This method was evaluated on 12 categories of herbal medicines

and achieved promising results. Wang et al.15 applied the self-

organization map to classify mixtures of Chinese herbal medicines,

obtaining better accuracy results for 59 types of herbal medicines.

Wang et al.16 used a combination of principal component analysis (PCA)

and back-propagation artificial neural network (BP-ANN) to create a

classification model for identifying three types of Chinese herbal medi-

cines. The results showed that this combined method outperformed

SVM and linear discriminant analysis (LDA). In addition, Ji et al.17 devel-

oped a classification model using five classical machine learning

methods, including ERT, XGBoost, and MLogit. Their findings indicated

that tree-based methods generally perform better in identifying Chinese

herbal medicines. In addition, certain studies have attempted to incor-

porate advanced machine learning techniques like RF, CatBoost, and

KNN to classify Chinese herbal medicines. Nevertheless, most machine

learning methods need to conduct feature ranking before producing

final prediction results. This process may lose some important informa-

tion, potentially negatively impacting model performance.

In recent years, deep learning methods have become the primary

approach in computer vision,18,19 natural language processing,20 and

data mining.21 Research showed that deep neural networks have been

successfully used to identify Chinese herbal medicines, producing
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promising results. For example, Liu et al.22 developed an automatic

classification framework for Chinese herbal medicines using deep neu-

ral networks. The method demonstrated promising performance but

was limited to processing image samples and not sequence data. Chen

et al.23 introduced the S-TextBLCNN model, which included several

Bi-LSTM modules and achieved superior performance in Chinese

herbal medicine classification. This project also offered a new per-

spective on the field by suggesting using NLP-related technologies in

building classification models. Compared with classical identification

methods, deep learning-based approaches can automatically identify

the relationship between different features and have demonstrated

significant advantages in high-dimensional omics data over machine

learning methods.24 Most deep learning models can be trained in an

end-to-end manner, and we can obtain complex models in a simple

way using raw input samples without any manual feature extraction.

However, deep learning models require plenty of data to train effec-

tively. Insufficient training samples may lead to severe overfitting,

seriously affecting the algorithm's performance. Although these cur-

rent classification methods can achieve high performance in classifica-

tion, numerous challenges still need to be tackled. Remarkably, most

methods only categorize herbal medicines, such as P. ginseng and

G. sinensis. However, it is challenging to differentiate species within

the same genus, such as P. ginseng and P. quinquefolius. Besides, these

approaches also have limitations when applied to the analysis of

Chinese herbal medicines, including model overfitting, complex inter-

pretation, and poor reproducibility.

To address the above issues, we introduce HerbMet, a novel

AI-based system for accurately identifying Chinese herbal medicines

using deep learning and metabolomics data. Inspired by successful

computer vision25,26 and natural language processing20,27 architec-

tures, we design a 1D ResNet-like architecture to extract distinctive

representations from input samples effectively. Subsequently, these

features are mapped to generate prediction results via a multilayer

perceptron (MLP). We also propose a double dropout regularization

module (DDR) to mitigate overfitting. To demonstrate the advantages

of the proposed model, we conduct several experiments between

HerbMet and several widely used machine learning and deep learning

algorithms on two metabolomics datasets. These datasets consist of

seven types of P. ginseng and three varieties of G. sinensis. We also

utilize 25 feature ranking techniques to select the most distinguishing

features and use them to build a more accurate model. By integrating

AI and metabolomics, HerbMet has the potential to revolutionize

quality control, pharmacological research, and clinical practice in the

field of Chinese herbal medicines, ultimately benefiting patients and

advancing the field of herbal medicine research.

2 | MATERIALS AND METHODS

2.1 | Data collection

We utilize two metabolomics datasets on the roots of seven P. ginseng

species28 and the seeds of three G. sinensis varieties29 to develop and

evaluate our AI models. For detailed information on the protocols for

metabolite extraction and analysis using LC-Q-TOF, please refer to the

original cited publications. The P. ginseng dataset comprises 70 samples,

including 7 species with 10 samples per species. Each sample involves

253-dimensional features, which can be represented as a 70�253

matrix. The G. sinensis dataset contains 45 samples divided into 3 cate-

gories, with 15 samples for each type. The feature dimension of the

G. sinensis dataset is much higher than that of the P. ginseng dataset,

with each sample containing 2,867-dimensional features. We define a

45�2,867 matrix to represent the collected G. sinensis dataset. The

details of collected datasets are presented in Tables S1 and S2, and

the raw metabolomics data can be found in Data S1 and S2.

2.2 | Data processing

Some studies30,31 have demonstrated that data processing technolo-

gies can have a significant impact on model performance. To achieve

an accurate and robust model, we have incorporated multiple data

processing methods to address null values and outliers in the metabo-

lomics dataset. First, we use the chained equations algorithm to fill in

missing values. Second, we apply the Box-Cox algorithm to harmonize

the data and reduce variations in distribution between different insti-

tutions. Following that, we standardize the data by using the min-max

method. Finally, we address data imbalance with the adaptive syn-

thetic sampling method while maintaining a specific balancing ratio.

2.3 | Proposed method

In this paper, we present HerbMet, an AI-based system designed to

accurately identify Chinese herbal medicines with deep neural

network and metabolomics data. The details of proposed system are

shown in Figure 1, which comprises data acquisition, data pre-

processing, data generation, and model analysis.

2.3.1 | Main architecture

In this study, we consider the task of Chinese herbal medicines identi-

fication as supervised learning problems. Therefore, we can use D¼
xi,yið Þf gni¼1 to represent the input dataset, where xi ¼ xnumi ,xcati

� �
�

defines numerical xnumij and categorical xcatij features of an object and

y� denotes the corresponding object label.

Artificial intelligence has revolutionized numerous fields, including

facial recognition, data mining, and machine translation. In the task of

Chinese herbal medicines identification, deep learning-based methods

have gained significant attention and are widely used.32 Unlike tradi-

tional machine learning algorithms like SVM and RF, deep learning

methods can automatically extract distinctive features from input

samples and use them to develop an efficient classification or regres-

sion model. Deep neural networks can leverage large amounts of

training data and advanced hardware devices, providing significant

SHA ET AL. 3

 10991565, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pca.3437 by IN

N
E

R
 M

O
N

G
O

L
IA

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [03/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://analyticalsciencejournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fpca.3437&mode=


advantages over machine learning systems in model performance,

training protocols, and inference speed.

We aim to develop an efficient system for identifying various

species of Chinese herbal medicines via metabolomics data. Usually,

most Chinese herbal medicines metabolomics datasets contain three

characteristics: high dimensionality, small sample size, and similar

biomarkers. Therefore, these may be challenging for existing methods

to produce promising results. In order to overcome these challenges,

we propose HerbMet, which is designed to learn semantic knowledge

from these complex metabolomics datasets. The proposed system

consists of two parties: 1D ResNet-like structure and DDR module.

Previous studies33,34 have indicated that many deep learning-

based sequence data analysis solutions are built with MLP. These

methods usually perform well in speed and feature representation

learning. However, MLP-based approaches may struggle when dealing

with complex datasets. Inspired by several works25,26 in computer

vision, we design a 1D ResNet-like structure for analyzing 1D sequence

data using Linear Layer. The proposed structure can be described as

Equation (1), mainly composed of ResBlock, Linear Layer, and GeLU.35

Figure 2 shows the detailed components of our introduced 1D ResNet-

like structure. Compared with the standard ResNet, we replace

Conv2D with Linear Layer. The simplified main building block is benefi-

cial for optimization and creating a clear path from input to output.

ResNet xð Þ¼Prediction ResBlock … ResBlock Linear xð Þð Þð Þð Þð Þ
ResBlock xð Þ¼ xþDropðLinear Drop GeLU Linear BatchNorm xð Þð Þð Þð Þð Þ
Prediction xð Þ¼ Linear GeLU BatchNorm xð Þð Þð Þ

ð1Þ

2.3.2 | Double dropout regularization module

It is well known that deep learning models are susceptible to overfit-

ting, especially when dealing with high feature dimensionality and

F IGURE 1 The overall study flow for this work. The metabolomic analysis of the rootsfor seven species of Panax ginseng species and the
seeds of 3 Gleditsia sinensis herbalmedicines were described as in the data source of the method section. The metabolomics peak area data from
the chromatographic features were pre-processed by noise reduction, normalization, and transformation. The dataset was then randomly
separated into training (80%), validation (10%), and test (10%) sets. The performance of our developed HerbMet model was compared against
10 commonly used machine learning and deep learning models.

F IGURE 2 Architecture of the proposed 1D ResNet-like structure. The structure contains three main components: the stem block as the
starting point, followed by new designed repeating 1D residual blocks (�N), and the prediction head as the final output. [Colour figure can be
viewed at wileyonlinelibrary.com]
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small sample sizes in many Chinese herbal medicines metabolomics

datasets.36 Therefore, we develop a simple and effective regulariza-

tion method, named DDR, based on standard dropout technology37,38

to address this issue. During the model training phase, the standard

dropout function randomly drops some units in each neural network

layer, which helps prevent overfitting and optimize model perfor-

mance. This technique does not affect the model's inference speed

and computational cost. However, standard dropout may lead to dis-

crepancies between model training and testing, which can have a neg-

ative impact on the model's performance. In the task of identifying

Chinese herbal medicines, slight differences can significantly impact

the model's performance. Therefore, we use DDR to boost the model

accuracy, by minimizing the negative log-likelihood loss function. The

details of DDR are illustrated in Figure 3.

In the training stage, we feed the input sample xi into the pro-

posed DDR. Unlike the normal training protocol, xi would go through

the forward pass of the neural network twice. Therefore, we can

obtain two distributions of the model prediction for the input sample

of xi, which can be defined as f1 yijxið Þ and f2 yijxið Þ. Due to the charac-

teristics of dropout, the distributions of f1 yijxið Þ and f2 yijxið Þ for

the same input sample xi,yið Þ are different. Therefore, our proposed

DDR attempts to regularize the model predictions by minimizing the

bidirectional Kullback–Leibler (KL) divergence between these two

predicted distributions for the same sample during the training stage.

The LDDR is defined as follows:

LDDR ¼1
2

Dkl f1 yijxið Þ
���f2 yijxið Þ

� �
þDkl f2 yijxið Þ

���f1 yijxið Þ
� �� �

, ð2Þ

where the Dkl denotes the loss function of Kullback–Leibler

(KL) divergence.

It is important to note that the proposed DDR is only utilized

during the model training phase. Therefore, it does not have any

impact on the inference speed or computational costs.

2.3.3 | Loss function

Focal loss39 is effective in classification tasks, especially in imbalanced

scenarios. Therefore, we use focal loss instead of the CE loss during

model training. The focal loss LFL can be defined as follows:

LFL ¼�at 1�ptð Þγ log ptð Þ, ð3Þ

where at is the balance parameter. And the pt can be calculated as

pt ¼
p

1�p

�
if y¼1

other
: ð4Þ

The p� 0,1½ � represents the model's predicted probability for the

input sample.

F IGURE 3 Structure of the proposed double dropout regularization (DDR) module for mitigating model overfitting. The DDR module consists
of one dropout layers, which is applied twice during the training process. As the input sample passes through the neural network, it undergoes
two forward passes, each with a different configuration of dropped units in the dropout layer. This results in two distinct distributions of model
predictions for the input sample. The DDR aims to minimize the bidirectional Kullback–Leibler divergence between these two predicted
distributions to effectively reduce overfitting and enhance model robustness.
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The final training objective is to minimize the L for input samples.

It can be defined as follows:

L¼LFLþ γLDDR, ð5Þ

where the γ is the coefficient weight to control the importance of

LDDR.

2.4 | Implementation details

We use the Adam optimizer and the cosine learning rate scheduler dur-

ing the training stages. Our proposed HerbMet is trained from scratch

on one Nvidia 4090 GPU with a batch size of 64 and 60 epochs. The

initial learning rate is set to 0.0003, and we use momentum of 0.9 along

with weight decay. To reduce the impact of partition randomness on

the obtained results, we adopt tenfold cross-validation to verify the

prediction performance of the proposed model. All deep learning-based

approaches are built with PyTorch 1.11 and Python 3.10.

2.5 | Evaluation metric

We evaluate model performance using mainstream metrics like accu-

racy, precision, recall, and F1 score. Definitions of these metrics are

provided in Equations (6)–(9).

Accuracy¼ TPþTN
TPþFPþTNþFN

, ð6Þ

Precision¼ TP
TNþFP

, ð7Þ

Recall¼ TP
TPþFN

, ð8Þ

F1�Score¼2�Precision�Recall
PrecisionþRecall

: ð9Þ

The abbreviation TP stands for “true positive,” which means that

the sample is in the positive category and has been correctly classi-

fied. On the other hand, FN, or “false negative,” refers to the sample

being in the positive category but is predicted to be negative. Simi-

larly, TN and FP represent “true negatives” and “false positives,”
respectively. The definitions of TN and FP are similar to TP and FN, as

mentioned above.

3 | RESULTS AND DISCUSSION

3.1 | Main results

In this section, we compare HerbMet with several classic machine

learning-based approaches, such as SVM, Random Forest (RF),

XGBoost,40 LightGBM,41 and CatBoost.42 We build an MLP-based

method to serve as the benchmark model for the deep learning

approach. The LSTM and Conv1D algorithms are also used as

comparison methods for identifying Chinese herbal medicines. Deep

learning-based methods have significant advantages in feature selec-

tion compared with machine learning approaches. To ensure a fair

comparison, we design two experiments to evaluate the model perfor-

mance. First, all methods are trained and evaluated on the raw data-

set. Second, we conduct experiments on feature-selected datasets

formed by the top 20 features. It is important to mention that the top

20 features are identified through various feature selection methods

and practical experience. The comparison results for the raw metabo-

lomics datasets of P. ginseng and G. sinensis are presented in Tables 1

and 2, respectively. According to the results, HerbMet demonstrates

better performance in identifying Chinese herbal medicines compared

to existing machine learning and deep learning methods. For instance,

when comparing HerbMet with Decision Tree on the raw P. ginseng

dataset, HerbMet achieves a relative improvement of 25.62% and

17.88% on accuracy and F1 score, respectively. Furthermore, as

depicted in Table 2, HerbMet can achieve 100% prediction accuracy

on the raw G. sinensis dataset, indicating a significant improvement

over existing methods.

Tables S3 and S4 illustrate the experimental results of HerbMet

and other comparison methods on the feature-selected datasets of

P. ginseng and G. sinensis. It is clear that our proposed HerbMet still

outperforms the existing methods in predicted accuracy. For instance,

HerbMet demonstrates a relative improvement over Random Forest

with 16.67% and 13.30% in accuracy and F1 score, respectively.

When we compare Tables 1 and S3, we can find that the performance

of all methods has been improved significantly in the feature-selected

dataset. Classic machine learning-based methods have been consider-

ably optimized, while the performance of deep learning-based

approaches minimal changes between the raw dataset and the

feature-selected one. The results also imply that our proposed

HerbMet can omit feature ranking, simplifying the operation process

for Chinese herbal medicines identification.

3.2 | Effectiveness of DDR module

In this paper, we introduce a regularization function named DDR,

which is primarily used to reduce overfitting and enhance model per-

formance. To explore the effectiveness of the proposed module, we

conduct several ablation experiments on the collected dataset. The

results on the raw P. ginseng dataset are presented in Table 3. As

the results show, our proposed DDR can optimize the model perfor-

mance with a significant margin. For instance, with the help of DDR,

HerbMet can achieve 10.48% and 10.15% relative improvements in

accuracy and F1 score, respectively. We also carry out similar experi-

ments on the G. sinensis dataset, which is shown in Table S5. The scale

of most Chinese herbal medicine metabolomics datasets is small due

to high collection costs and complex processing. Therefore, numerous

analysis models in this field often struggle with overfitting due to

6 SHA ET AL.
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TABLE 2 Performance comparison of HerbMet and 10 machine learning and deep learning methods for distinguishing three Gleditsia sinensis
species using all collected metabolomics features

Machine learning/deep learning models

All collected metabolomics features from G. sinensis

Accuracy F1 score Precision Recall

Logistics regression 0.7778 ± 0.02 0.8055 ± 0.01 0.8667 ± 0.01 0.8333 ± 0.01

Random forest 0.7778 ± 0.01 0.7222 ± 0.01 0.7778 ± 0.03 0.8333 ± 0.02

KNN 0.6667 ± 0.01 0.5757 ± 0.02 0.5238 ± 0.02 0.6667 ± 0.03

Decision tree 0.7778 ± 0.02 0.6000 ± 0.02 0.5556 ± 0.01 0.6667 ± 0.01

SVM 0.8889 ± 0.03 0.8666 ± 0.03 0.8889 ± 0.01 0.8889 ± 0.03

XGBoost 0.8889 ± 0.01 0.8222 ± 0.02 0.8889 ± 0.01 0.8333 ± 0.01

LightGBM 0.7778 ± 0.02 0.7500 ± 0.01 0.7500 ± 0.01 0.7500 ± 0.01

CatBoost 0.7778 ± 0.01 0.8056 ± 0.02 0.8333 ± 0.01 0.8667 ± 0.02

MLP 0.8889 ± 0.01 0.8667 ± 0.01 0.8889 ± 0.02 0.8889 ± 0.02

Conv1D 0.8889 ± 0.01 0.8889 ± 0.02 0.8889 ± 0.02 0.8889 ± 0.01

LSTM 1.0 ± 0.02 1.0 ± 0.01 1.0 ± 0.02 1.0 ± 0.02

HerbMet 1.0 ± 0.01 1.0 ± 0.01 1.0 ± 0.01 1.0 ± 0.01

Note: Higher values indicate better performance. Bold denotes the best performance. Data are represented as mean ± SD.

TABLE 3 Performance of the double
dropout regularization (DDR) module in
HerbMet for distinguishing seven Panax

ginseng species using all collected
metabolomics features or the top 20
selected features

Dataset Type Accuracy F1 score Precision Recall

All metabolomics features wo. DDR 0.8571 0.8571 0.9286 0.8571

w. DDR 0.9571 0.9542 0.9714 0.9571

Top 20 selected features wo. DDR 0.9286 0.9238 0.9524 0.9286

w. DDR 1.0 1.0 1.0 1.0

Note: The 20 features were selected based on 25 feature ranking methods in combination with prior

knowledge. These features include C207, C202, C75, C32, C6, C10, C71, C50, C36, C138, C110, C93,

C189, C187, C186, C46, C111, C201, C102, and C190 (see Data S1 for details about these compounds).

Abbreviations: w. DDR, HerbMet with DDR; wo. DDR, HerbMet without DDR.

TABLE 1 Performance comparison of HerbMet and 10 machine learning and deep learning methods for distinguishing seven Panax ginseng
species using all collected metabolomics features

Machine learning/deep learning models

All collected metabolomics features from P. ginseng

Accuracy F1 score Precision Recall

Logistics regression 0.8571 ± 0.02 0.8603 ± 0.03 0.8571 ± 0.02 0.9238 ± 0.03

Random forest 0.8571 ± 0.01 0.8095 ± 0.02 0.8333 ± 0.03 0.875 ± 0.02

KNN 0.8095 ± 0.03 0.8095 ± 0.04 0.8857 ± 0.02 0.8857 ± 0.01

Decision tree 0.7619 ± 0.02 0.8095 ± 0.01 0.8095 ± 0.02 0.8428 ± 0.02

SVM 0.8571 ± 0.03 0.8989 ± 0.03 0.9285 ± 0.02 0.9166 ± 0.01

XGBoost 0.8095 ± 0.01 0.8102 ± 0.02 0.8333 ± 0.03 0.8433 ± 0.02

LightGBM 0.8095 ± 0.02 0.8272 ± 0.01 0.8333 ± 0.03 0.8714 ± 0.03

CatBoost 0.9047 ± 0.02 0.8214 ± 0.01 0.8571 ± 0.04 0.7999 ± 0.01

MLP 0.8857 ± 0.02 0.8837 ± 0.03 0.9381 ± 0.03 0.8856 ± 0.04

Conv1D 0.8571 ± 0.01 0.8810 ± 0.02 0.8571 ± 0.02 0.8524 ± 0.03

LSTM 0.9286 ± 0.03 0.9524 ± 0.04 0.9286 ± 0.03 0.9238 ± 0.02

HerbMet 0.9571 ± 0.01 0.9542 ± 0.03 0.9714 ± 0.01 0.9571 ± 0.02

Note: Higher values indicate better performance. Bold denotes the best performance. Data are represented as mean ± SD.
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limited sample size. Experimental results demonstrate that the pro-

posed DDR can tackle this issue effectively. In addition, DDR is only

used in the training phase, so it does not impact the model's operating

efficiency and inference speed.

3.3 | Effectiveness of backbone architecture

Generally, we often prioritize the model's accuracy over algorithm

efficiency and inference speed. Nevertheless, algorithm efficiency is

critical when implementing models in real-world projects. Deep learn-

ing models with substantial parameters and high computational costs

typically deliver superior performance, but they are inefficient and

demand advanced hardware for deployment. Therefore, we conduct

experiments to analyze the algorithm's operating efficiency and

inference speed, aiming to demonstrate that our proposed method is

suitable for real-world scenarios. We compared the proposed 1D

ResNet-like structure with classic deep learning-based solutions, such

as VGG43 and ResNet.26 The results are presented in Table 4, which

shows that the proposed backbone architecture offers significant

advantages in terms of model parameters and computational costs.

Based on the findings in Section 3.2 and Table 4, the proposed

HerbMet demonstrates the ability to achieve high accuracy in

classifying Chinese herbal medicines. Furthermore, it offers significant

advantages in model operation efficiency and computational costs.

This method could potentially serve as a primary approach to further

the development of Chinese herbal medicines analysis.

3.4 | Evaluation of inference speed

In practical scenarios, it is crucial to consider the inference speed of

the algorithm. Therefore, we compare the running speed of classic

machine learning methods and deep learning methods on CPU (Intel

Xeon Gold 6338 @ 2.00GHz) and GPU (Nvidia GTX 4090). The exper-

iment results are presented in Table 5. Specifically, most classic

machine learning methods (such as SVM and Random Forests) are

challenging to run on advanced hardware such as GPU or NPU. There-

fore, we only verify the machine learning algorithm on the CPU.

Meanwhile, the proposed MLP and HerbMet are evaluated using CPU

and GPU. We hope that the proposed HerbMet can be used in most

practical scenarios, so we select an entry-level GPU device for model

training and testing instead of employing expensive professional

devices, such as Nvidia A100 or H100. We perform 10,000 tests for

each algorithm and calculate the average time for the final result.

Initially, we use a single sample as an input to evaluate the model

processing speed. We observe that the proposed HerbMet performs

faster inference than Random Forest and CatBoost. With the assis-

tance of GPU, HerbMet's inference speed can be further improved.

Fortunately, modern computing devices can handle complex parallel

computing tasks efficiently. Thus, we conduct extensive experiments

to verify the parallel computing efficiency of the proposed method.

All algorithms are required to predict 1,000 samples simultaneously.

Table 5 shows that the proposed HerbMet takes only 0.435 ms to

yield the final results, which is 136X faster than KNN. Although our

TABLE 4 Comparison of model parameters and computational
cost for different deep learning algorithms

Models Parameters (M) MACs (M)

ResNet-50 25.557 33.977

MobileNetv2 3.505 4.176

ShuffleNetv2 2.279 2.497

EfficientNet-B0 5.289 5.994

MLP 0.683 0.228

HerbMet 1.102 0.337

Abbreviation: MAC, multiply-accumulate operations.

TABLE 5 Comparison of inference speed between different machine learning and deep learning methods on CPU and GPU

Batch size = 1 Batch size = 1,000

CPU (ms) GPU (ms) CPU (ms) GPU (ms)

Logistics regression 0.089 - 7.470 -

Random forest 3.072 - 12.659 -

KNN 1.190 - 59.249 -

Decision tree 0.096 - 5.722 -

SVM 0.121 - 15.439 -

XGBoost 0.383 - 6.869 -

LightGBM 0.903 - 7.658 -

CatBoost 1.410 - 52.270 -

MLP 0.161 0.096 2.100 0.138

HerbMet 0.620 0.251 3.594 0.435

Note: The CPU used for testing was Intel Xeon Gold 6338 @ 2.00GHz, and the GPU was Nvidia GTX 4090. All of the results were mean values after

running 10,000 times. Batch size = 1 defines the model using one sample to get the final result. Batch size = 1,000 represents the model predicting 1,000

results simultaneously.

8 SHA ET AL.

 10991565, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pca.3437 by IN

N
E

R
 M

O
N

G
O

L
IA

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [03/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://analyticalsciencejournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fpca.3437&mode=


method is based on a deep neural network, its inference speed

surpasses most classic machine learning methods. The advantages of

HerbMet should become more pronounced when deployed on a more

powerful GPU or NPU device.

3.5 | Discussion

In recent years, AI-related technologies have gained significant atten-

tion. Significant developments in large language and multimodal vision

models have recently revolutionized our knowledge of deep learning.

Advanced AI technology has found widespread application in various

fundamental science and interdisciplinary fields, such as bioinformat-

ics, computational chemistry, and artificial intelligence drug discovery.

In this article, we discuss the use of advanced artificial intelligence

techniques for identifying Chinese herbal medicines. Our approach

involves taking metabolomics data as input and analyzing it using a

deep neural network model. This allows us to quickly and accurately

identify the species of Chinese herbal medicines. Unlike classic

machine learning solutions, our approach eliminates the need for com-

plex pre-processing steps, such as feature ranking. The proposed

HerbMet relies on deep neural networks to extract discriminate

representations directly from complex data, optimizing the algorithm's

performance and simplifying the analysis steps. Although HerbMet

shows promising results on two Chinese herbal medicines metabolo-

mics datasets, multiple factors may impact the model's performance.

Therefore, we conducted extensive experiments from various per-

spectives to comprehensively analyze the model structure and feature

selection.

Various studies37,44 have highlighted that overfitting can seriously

impact the performance of deep learning models. The metabolomics

datasets for Chinese herbal medicine typically have small sample sizes

because of high collection costs and complex processing steps. As a

result, model overfitting is a more challenging problem in Chinese

herbal medicines analysis. In order to address the problem, we

develop the DDR module as a regularization function to enhance the

algorithm's performance. We conduct a series of experiments on

the raw P. ginseng dataset to compare the effectiveness of the DDR

module and other regularization methods such as standard Dropout,

Drop Connect,45 and Ada-Dropout.44 Results are shown in Table 6.

Notably, the baseline model does not use any regularization method

in the model training stage. Our proposed DDR module can lead to a

significant improvement in model performance compared to other

regularization techniques. The results show that DDR has demon-

strated a relative improvement of 11.67% in accuracy and 11.71% in

F1 score compared to the baseline model.

Based on the results from Section 3.1, it is evident that most

methods perform better when using the feature-selected dataset

rather than the raw one. Can we identify a more representative set of

features and use them to create a powerful classification model for

Chinese herbal medicines analysis? To answer this question, we

design comprehensive experiments to investigate these features. In

this part, we utilize 25 feature selection models to determine the top

20 most important features for P. ginseng and G. sinensis datasets.

Details of the feature selection methods can be found in Table S7.

The top 20 important features of the P. ginseng dataset are depicted

in Figure S1A. Moreover, experiments are conducted to access the

contribution of these ranked features to the final results. Table 7

reports the comparison results of HerbMet in the P. ginseng dataset.

Specifically, “Feature Top 1” refers to the model performance using

the top 1 feature, whereas “Feature Top 1�2” elucidates the predic-

tion outcome of HerbMet based on the top 1 and 2 features. From

the results, we can see that our proposed HerbMet is able to achieve

100% accuracy in classifying the species using only the top 14 features

for the P. ginseng identification task. A similar experiment is carried

out on the G. sinensis dataset, resulting in a 100% prediction accuracy

based on the top 4 features. The results are presented in Figure S1B

and Table S6. Tables S8 and S9 display the top 20 ranked features of

the P. ginseng and G. sinensis datasets by different feature selection

methods. Based on the findings, we can create a more efficient classi-

fication model by incorporating representative features. The proposed

HerbMet model can accurately identify Chinese herbal medicines with

a limited number of selected features. Consequently, the measure-

ment of a large amount of metabolomics data in practical settings can

be avoided, thereby simplifying the process of classifying Chinese

herbal medicines. Furthermore, this approach can facilitate the devel-

opment of AI-related techniques in this field.

3.6 | Limitations and future works

The method presented in this paper exhibits superior performance

compared to traditional methods. Nonetheless, it still faces many

obstacles, such as structural design, feature processing, and model

TABLE 6 Comparison of the double
dropout regularization module (DDR)
with other common regularization
algorithms in HerbMet for distinguishing
seven Panax ginseng species using all
collected metabolomics features without
feature selection

Dropout methods

Performance metrics for distinguishing seven different P. ginseng species

Accuracy F1 score Precision Recall

Baseline 0.8571 0.8524 0.8810 0.8571

Standard Dropout 0.9286 0.9238 0.9524 0.9286

DropConnect 0.8571 0.8571 0.8571 0.8571

Ada-Dropout 0.9286 0.9238 0.9524 0.9286

DDR 0.9571 0.9542 0.9714 0.9571

Note: Higher is better. Bold denotes the best performance.
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deployment. For example, even though the HerbMet shows faster

inference speeds than current methods, it mostly relies on advanced

hardware. Nevertheless, some particular operators might not be

supported by embedded devices, which could make it more difficult

to use the suggested approach in real-world projects. Furthermore,

HerbMet only evaluate on two Chinese herbal medicines datasets.

Consequently, we have to use additional datasets to comprehensively

verify the model performance.

In light of this, we will do follow-up work from the perspectives

of model design and data gathering. In terms of model design, we will

continue to improve model performance and regularization capabili-

ties by optimizing the 1D ResNet-like architecture and DDR module.

For example, we may include the Cross Attention Module and Trans-

former Block into the backbone to increase the feature extraction

capability. Regarding data collection, we plan to collect more Chinese

herbal medicine metabolomics datasets and verify the generalization

and robustness of HerbMet on various datasets. Furthermore, we

intend to launch an online platform that offers feature selection,

model training, and species identification for Chinese herbal

medicines.

4 | CONCLUSION

This paper presents a novel framework, called HerbMet, which applies

deep neural networks and metabolomics data to accurately identify

species of Chinese herbal medicines. We evaluate the proposed

method's performance on the P. ginseng and G. sinensis datasets. The

results demonstrate that the HerbMet outperforms previous solutions

significantly. To address the issue of model overfitting in the

identification of Chinese herbal medicine species, we developed a

novel regularization module named DDR, which can improve model

performance without reducing inference speed. Furthermore, we

employ several popular feature ranking methods to identify some

important features, which is beneficial to constructing efficient classi-

fication models.
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TABLE 7 Performance comparison of metabolomic feature numbers used in HerbMet for distinguishing seven Panax ginseng species

Number of metabolomic features used in HerbMet

Performance metrics for distinguishing seven different P. ginseng species

Accuracy F1 score Precision Recall

Top 1 0.5000 0.4646 0.4762 0.5714

Top 1�2 0.5000 0.5190 0.5238 0.5714

Top 1�3 0.7143 0.5857 0.5238 0.7143

Top 1�4 0.7857 0.7129 0.7738 0.7143

Top 1�5 0.7857 0.7143 0.7857 0.7143

Top 1�6 0.7857 0.7177 0.7500 0.7143

Top 1�7 0.8571 0.8000 0.7619 0.8571

Top 1�8 0.8571 0.8000 0.7619 0.8571

Top 1�9 0.9286 0.8286 0.8095 0.8571

Top 1�10 0.9286 0.8286 0.8095 0.8571

Top 1�11 0.8571 0.8367 0.8929 0.8571

Top 1�12 0.9286 0.9238 0.9524 0.9286

Top 1�13 0.9286 0.9238 0.9524 0.9286

Top 1�14 0.9286 0.9238 0.9524 0.9286

Top 1�15 1.0 1.0 1.0 1.0

Top 1�16 1.0 1.0 1.0 1.0

Top 1�17 1.0 1.0 1.0 1.0

Top 1�18 1.0 1.0 1.0 1.0

Top 1�19 1.0 1.0 1.0 1.0

Top 1�20 1.0 1.0 1.0 1.0

Note: Top 1 defines HerbMet using only the top 1 feature to build the model. Similarly, Top 1�10 indicates HerbMet is trained and evaluated using the

top 10 features. The 20 features were selected based on 25 feature ranking methods in combination with prior knowledge. These features include C207,

C202, C75, C32, C6, C10, C71, C50, C36, C138, C110, C93, C189, C187, C186, C46, C111, C201, C102, and C190 (see Data S1 for details about these

compounds).
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